
Journal of Computational Physics 228 (2009) 9001–9019
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
An improved known vicinity algorithm based on geometry test
for particle localization in arbitrary grid

Ke Peng a,*,1, Zhang Shuguang a, Wu Jianghao a, Yang Chunxin b

a School of Transportation Science and Engineering, Beihang University, Beijing 100191, PR China
b School of Aeronautical Science and Engineering, Beihang University, Beijing 100191, PR China

a r t i c l e i n f o a b s t r a c t
Article history:
Received 30 December 2008
Received in revised form 5 August 2009
Accepted 4 September 2009
Available online 13 September 2009

MSC:
65K10
76T10
76M28

PACS:
47.55.Ca
47.55.Kf

Keywords:
Particle localization
Eulerian–Lagrangian simulation
Known vicinity algorithm
Binary search
Unstructured grid
0021-9991/$ - see front matter Crown Copyright �
doi:10.1016/j.jcp.2009.09.003

* Corresponding author. Tel.: +86 01 82316627; f
E-mail address: p.ke@buaa.edu.cn (P. Ke).

1 The work is supported by the China Postdoctoral
The known vicinity algorithm based on the geometry test for the particle localization prob-
lem in the hybrid Eulerian–Lagrangian model was extended and enhanced aiming at the
connected grids with convex polygon/polyhedral cells. Such extensions were achieved by
proposing novel improvements. Specifically, a new ‘‘side function”, to determine the rela-
tive position of the particle and the cell, was introduced to build a more formal test process.
In addition, a binary search method was developed to accelerate the particle in cell test and
trajectory/face intersection test for grids consisting of arbitrary polygon/polyhedral cells.
Further, the particle location problem without the known vicinity position was established
and solved by special boundary treatment through considering the internal/external
boundary and larger particle displacement in one single Lagrangian step. The improved
algorithm was applied to the particle location problem with both two dimensional and
three dimensional Eulerian grids. Additionally, the proposed algorithm was compared with
the previous ones to exhibit its higher efficiency and broader application. Sample cases
focusing the water impingement computation for aircraft icing were solved by adopting
this algorithm assisted by the Lagrangian particle dynamics model, and the computational
results were verified by the experiments.

Crown Copyright � 2009 Published by Elsevier Inc. All rights reserved.
1. Introduction

The hybrid Eulerian–Lagrangian model is widely used for the numerical simulation of two-phase flow and multiphase
flow. Using this hybrid model, the mass, momentum and energy of each unit volume of the carrier phase are firstly obtained
by solving the partial differential equations with finite volume/difference/element methods, while the position, mass,
momentum and energy of each single particles moving in the fixed Eulerian mesh are derived using Lagrangian approach.
Furthermore, the fluid properties are stored in the Eulerian mesh and the properties at the particle location must be evalu-
ated prior to solving the ordinary differential equations of the dispersed particle. Therefore, locating the host cell containing
each tracked particle, termed as particle localization problem (PLP), is important.

There are two kinds of particle localization problem: those with prior knowledge of a neighboring location, and those
without. The first kind was formally defined by Haselbacher et al. [1]: ‘‘Given a grid, a particle position, and the cell which
2009 Published by Elsevier Inc. All rights reserved.

ax: +86 01 82315237.

Science Foundation under No. 20080440012.

http://dx.doi.org/10.1016/j.jcp.2009.09.003
mailto:p.ke@buaa.edu.cn
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp

9002 P. Ke et al. / Journal of Computational Physics 228 (2009) 9001–9019
contains that particle position, determines the cell which contains a nearby particle position.” The second one could be char-
acterized as: Given a grid and a particle position, to locate the cell containing that particle position.

Usually, the host cell can be determined quickly using the particle location and grid mapping for uniform Cartesian grids.
However, this approach cannot be directly utilized in the unstructured grid. For unstructured grids, Lohner and Ambrosiano
[2] listed three most promising methods for solving the particle localization problem: (a) Using a Cartesian background grid
to superimpose the irregular foreground gird on a regular background grid. (b) Using tree structures to circumvent the big
grid with some small, different size Cartesian grids in a hierarchy. (c) Using successive neighbor searches. They preferred to
the third one and presented a particle tracer for unstructured girds with linear basis shape functions used in finite element
methods. Subsequently, Lohner [3] developed a more robust search algorithm, ‘‘known vicinity algorithm”, which was
stemmed from the successive neighbor searcher combined with the brute force or Octree search methods in case that the
successive neighbor searcher failed.

This known vicinity algorithm has been widely studied and applied to the first kind of the PLP due to its conciseness and
high efficiency. Li and Modest [4] introduced an ‘‘element-to-element” search scheme, similar to the know vicinity method,
to perform hybrid finite volume PDF Monte Carlo simulations, which implies a wide range of potential applications utilizing
this scheme. Apte et al. [5] employed this algorithm to track the particle on unstructured hexahedral grids when developing
the large eddy simulation of particle-laden, swirling flow in a coaxial-jet combustor. Petera et al. [6] applied the similar
method to the tetrahedral mesh to model a dispersion of electrically charged droplets in motion inside a second immiscible
liquid phase continuum in the presence of an external electric field. Widhalm et al. [7] adopted it to determine the droplet
trajectories on Euler grids in order to predict the water impingement and ice accretion on the aircraft.

There are two key issues in the known vicinity algorithm: the particle in cell (PIC) test, which is used to determine a cell
hosting a given particle position or not, and the neighbor selection, which is used to choose the next cell to search in case that
the particle is not in current cell. Many researchers have performed great work and built a variety of useful schemes to im-
prove the algorithm’s effectiveness, robustness and application of this algorithm.

Judgments in PIC test have also been broadly studied. For example, Lohner [3] discussed the linear basis shape functions
on triangle to search for cells holding a given particle, and pointed out that the elements must be split into sub-triangles or
tetrahedra when the nodes are more than shape equations. Widhalm et al. [7] adopted such methods and implemented for
each element type supported by their unstructured Navier–Stokes solver TAU, respectively. They then used the local coor-
dinates deduced from shape function to interpolate the flow properties to the particle position. Westermann [8] presented
three localization schemes for PIC test in two dimensional (2D) mono-block structured grids consisting of arbitrary convex
four-point cells, which were based on calculation of the areas, or simplices, or an interpolation scheme. Li and Modest [4]
introduced a new judgment, which was the ratio of the particle trajectory normal to a face to the normal distance between
the old particle location and the face. These PIC test methods are elaborated, but complex to practically implement and heavy
computational burden to reach the judgements.

To reduce the computational time, more straightforward and prominent methods [1,9–13] based on the geometry rela-
tionship test were developed for the PIC test. In detail, Chen [9], Chen and Pereira [10] found that a particle must be inside
the volume when the particle and the central reference point lay at the same side of all the boundary side of an control
volume, and then proposed a new PIC test approach. It is efficient for body-fitted curvilinear coordinates and can be used
when the particle moved many Eulerian cells among one Lagrangian tracking time step. A similar scheme was independently
developed by Zhou and Leschziner [11]. They employed a counter-clockwise definition to avoid the auxiliary interior refer-
ence point, and named it as particle-to-the-left (P2L) test to conduct the PIC test. Their method was applicable to any coor-
dinate system. Chorda et al. [12] adopted these methods and extended to three dimensional (3D) grids. Haselbacher et al. [1]
enhanced its robustness and efficiency to consider arbitrary polyhedral cells and large particle displacements, and dealt with
the interaction of particles with boundaries by reflection.

As to the neighbor selection schematic in the known vicinity algorithm based on geometry relationship test, all neighbor
cells were searched firstly [8,10] under the assumption of small particle displacement, such as the circular search. Neverthe-
less, it was inefficient for the bigger Lagrangian steps, where the number of the neighbor cells increased dramatically with
bigger time step. Besides that, Lohner [3] selected the element adjacent to the face opposite the node with minimum shape
function value. Apte [5] chose the successive face-neighboring cells where the distance between the centroid of a cell and the
new particle location was minimized. Consequently, they used an exhaustive search to ensure that the particle can be lo-
cated in case successive neighbor search failed. Coppola [14] proposed a hybrid approach to advance a particle in both
the physical and the parametric space without requiring nonlinear iterations for the high-order elements to solve the shape
function.

Zhou and Leschziner [11] selected the cell adjacent to the first face that failed the P2L test. Although such selection mode
was very simple, it may result in worse performance under certain conditions [12]. Martin et al. [13] used the maximum
positive dot product method to identify the adjacent cell, and showed its advantage by comparing it with P2L test. Chen
and Pereira [10] computed the intersection of the trajectory and the faces failing the same side test, and determined the
new cell by the face with internal intersecting point, which was chosen by the comparison of the distance to the initial par-
ticle position. Haselbacher et al. [1] tracked a particle along its trajectory by computing the intersections of the trajectory and
the cell faces, planar or non-planar, similarly to the one designed by Chen and Pereira [10]. Chorda et al. [12] proposed tra-
jectory-to-the-left (T2L) test to determine the intersection of the trajectory and face, and then extended it into 3D grids. This
method was much efficient as the result taking advantage of P2L test and avoiding the complex intersection computation.

P. Ke et al. / Journal of Computational Physics 228 (2009) 9001–9019 9003
In summary, the known vicinity algorithm based on geometry relationship test was well studied for the first kind PLP and
proven to be efficient. But it has not been applied to the second kind PLP, where the initial cell was unknown, which some-
time is hard to be located. For example, in the computation of water droplet impingement in numerical simulation of aircraft
icing, the droplets need to be released from some upwind positions, which are a little far away from the wall face to be con-
sidered, such as the wing or stabilizer. Usually the cell of the Eulerian grid containing the release position is unknown,
although the release position can be generated.

Furthermore, two problems need further considerations. Specially, the first problem is the boundary problem. For the
greater particle displacement and the longer search path, the internal boundary, such as unreachable cells or holes, and
the external boundaries in grids with complicate shape, may encounter on the search path. Currently the known vicinity
algorithm needs to turn to other auxiliary means, such as reflection computation [1], which is efficient but might face dif-
ficulties when the predicted trajectory parallels the normal vector of the centroid of the boundary face, or brute force [2–4],
which is exhaustive and time-consuming, or Octree [2,3,13], which needs more additional work to build and store the com-
plex data structures for the Eulerian grid. The second problem is the efficiency of PIC test and the neighbor selection, where
all faces of a cell must be test currently to ensure that the particle is really in a given cell. It will be a burden when the num-
ber of the face or edge of the polygon/polyhedral cell increases.

The goal of this paper, therefore, is to extend and improve the current widely used known vicinity algorithm targeting
both kinds of the particle localization problem mentioned above. The proposed algorithm was based on the geometry test
and could be applied to both 2D and 3D grids. It took into consideration the initial cell and boundary problem, and developed
a binary search method to speed up the PIC test or neighbor selection for grids consisting of arbitrary polygon/polyhedral
cells.

The remainder of this article is arranged as follows: Section 2 describes the extensions and improvements in detail,
including the basic notations and the introduction to the algorithm. Section 3 shows the implementation of this algorithm
and compares it with previous ones. Section 4 demonstrates the algorithms’ applications combined with the particle dynam-
ics models in the numerical simulation of aircraft icing. The conclusions are drew in Section 5.
2. Descriptions of the new particle localization algorithm

In this study, we focused in the connected grids with convex, structured or unstructured, cells. The connected grid was
defined by Bredon [15] as: ‘‘the grid is not the disjoint of two nonempty open sub-grids.”. Accordingly, a particle can move
from one cell to any other cells through a serial of adjacent cells in such grid without going out of the boundary. All terms
involved in this section will be defined in Appendix A.

The notations including the representation of the cell and face will be introduced firstly.
2.1. Notations

In any Eulerian grid, a cell C consists of at least three faces and can be represented by its face as, CðFÞ ¼ fFiji ¼
1;2; . . . ; nF ; nF P 3g, where nF is the number of face. Any face has at least two nodes and can be denoted by nodes as
FðNÞ ¼ fNiji ¼ 1;2; . . . ;n; n P 2g, or just F ¼ N1N2 � � �Nn, where n is the node number of the face, and Ni is the node of the
face. Particularly, in 2D grid, the nodes number of a cell is equal to the number of its face, so the cell can be expressed by
the nodes directly, i.e., CðNÞ ¼ fNiji ¼ 1;2; . . . ;n; n P 3g.

The reverse face, denoted by F�, represents the face which has the same nodes of F, but those nodes are sorted in reverse
order. For example, the face F ¼ N1N2 in 2D grid has the reverse face F� ¼ N2N1. The position of node Ni is expressed as ðxi; yiÞ
for 2D Cartesian coordinates, or ðxi; yi; ziÞ for 3D Cartesian coordinates.

The nodes of all faces or cells must be sorted in the same order, either clockwise or counter-clockwise. The nodes in 2D
grid sorted in counter-clockwise are shown in Fig. 1(a)–(c); all nodes in 3D grid sorted in counter-clockwise are
demonstrated in Fig. 1(d), where the normal vector of the face computed by the right-hand rule points to the cell inner.
The clockwise order was defined reversely.
N1 N2

N3

N1 N2

N3N4

N1 N2

N3

N5 N4

N6

N1
N2

N3

N5N4

N6

(d)(c)(b)(a)

Fig. 1. Sample faces with nodes sorted counter-clockwise.

9004 P. Ke et al. / Journal of Computational Physics 228 (2009) 9001–9019
2.2. Algorithm overview

To locate the target position P0 in a given Eulerian grid for both kinds of PLP, several key steps of the current improved
algorithm were given followed by its detailed discussion. A flowchart (Fig. 2) depicting the current algorithm was given.

(1) Initiate the current cell C by the presetted starting cell for the first kind of PLP, or by an arbitrary guess from the cur-
rent grid for the second kind; and then take its centroid P as the current position. It is possible that the guessed posi-
tion P is far away from the target position P0 for the second kind of PLP.

(2) Perform the PIC test to determine whether the P0 is in the cell C or not. The localization process will succeed when PIC
test returns true. Otherwise, the procedure turns to step (3).

(3) Conduct the TFI (trajectory/face intersection) test to find the exit face F intersecting the trajectory PP0 from the faces
where the PIC test in step (2) failed.

(4) Select the exit face by considering the special boundary treatment, which will be discussed in detail in Section 2.3.5. If
there is any suitable face F, the procedure turns to step (5). If not, the localization process fails.

(5) Identify the cell C0 sharing face F with the current cell C, reset the new cell C using the cell C0. Afterward, the process
returns to step (2).
2.3. Details of the algorithm

In this section, the algorithm will be discussed in details, where the side function is the core of the PIC and TFI test.
2.3.1. Side function
A side function UðP; FÞ was defined to indicate the position relationship of the given point P to the given face F based on

geometry test, which came of the P2L test [11] and was used to conduct both the PIC and TFI test. Besides, the side function
has general expressions for both 2D and 3D case, which is more formal to formulate the test process. For any point lying at
the same side of the face, it will result in the same side value, which is the result generated by the side function.
Succeed

Fail

Given an Eulerian grid and the target position P'

True

False

PIC test for P' and C

TFI test for PP' and the faces of C

Determine the neighbor cell

Reset the current cell C and position P

Initiate the current cell C and position P

Select the exit face by special boundary treatement

Yes

Any suitable face?
No

Fig. 2. Flowchart of the improved algorithm for the particle location problems.

P. Ke et al. / Journal of Computational Physics 228 (2009) 9001–9019 9005
As shown in Fig. 3, for a given face FðNÞ ¼ fNiji ¼ 1;2; . . . ;n; n P 2g and a given position P, the side function was defined
as,
UðP; FÞ ¼ sign½N1P � ðN1N2 � N1N3Þ�; ð1Þ
where N1; N2; N3 were the arbitrary three different nodes sorted counter-clockwise. For 2D face, the vector
N1N3 ¼ ð0;0;�1Þ. The signðaÞ was the signature function for scalar a, and defined as,
signðaÞ ¼
þ1; a P 0;
�1; a < 0:

�
ð2Þ
Given a 2D face using Cartesian coordinate
F ¼ fN1ðx1; y1Þ;N2ðx2; y2Þg
and a point Pðx; yÞ demonstrated in Fig. 3(a), the side function can be expanded as:
UðP; FÞ ¼ sign½ðx2 � x1Þ � ðy� y1Þ � ðx� x1Þ � ðy2 � y1Þ�: ð3Þ
Examples are shown in Fig. 4 for the face with counter-clockwise sorted nodes, where UðP; FÞ ¼ UðP1; FÞ ¼ þ1, and
UðP2; FÞ ¼ �1. The P and P1 lie at one side of face F, while P2 lies at another side.

As to the reverse face, it can be derived as follows,
UðP; F�Þ ¼ �UðP; FÞ: ð4Þ
Eq. (4) is useful for the binary search method in PIC and TFI test described below.

2.3.2. PIC test
As introduced by Zhou and Leschziner [11], one particle lies in a cell only when it lies at the same side of all the faces

forming that cell, that is, all side functions return the same side value. If any face fails to yield the same side value as others,
the particle must be outside the corresponding cell. Previously, all faces were tested one-by-one to ensure the position is
really in a cell. Such process is exhaustive and time-consuming. A binary search method will be proposed to accelerate
the PIC test, where the cell faces were not tested directly. Only those consisted of pairs of diagonal nodes were tested.

2.3.2.1. Basics of the binary search method with side function. For a 2D cell, supposed a given cell CðNÞ ¼ fNiji ¼
1;2; . . . ; n; n P 3g and a given position P, as displayed in Fig. 6(a) as a example. If there are three nodes
Ni; Nj1 ; Nj2 ; i < j1 < j2; i; j1; j2 2 ½1;n�, and UðP;NiNj1 Þ ¼ UðP;Nj2 NiÞ ¼ þ1. The conclusion can be reached that the position
P lies in the region between face NiNj1 and Nj2 Ni. Thus, there will be two possible side value for any node Nk; k 2 ðj1; j2Þ:
P

N1
N2

N3

P

N1 N2

N3

(a)

X

Y
Z

O

(b)

X

Y
Z

O

FF

Fig. 3. Demonstration of the side function definition: (a) 2D and (b) 3D.

N1 N2

P

P1

P2

F
N1

N2 N3

P

F

P1

P2

(a) (b)

Fig. 4. Demonstrations of the side function application: (a) 2D and (b) 3D.

9006 P. Ke et al. / Journal of Computational Physics 228 (2009) 9001–9019
Case (a): UðP;NkNiÞ ¼ þ1. Therefore, it can be concluded without further computations that UðP;NtNiÞ ¼ þ1 for any node
Nt , t 2 ðk; j2Þ.
Case (b): UðP;NkNiÞ ¼ �1, that is, UðP;NiNkÞ ¼ þ1. Similarly, no more computations are needed. It is true that
UðP;NiNt0 Þ ¼ þ1 for any node Nt0 , t0 2 ðj1; kÞ.

In this way, more side values can be derived directly by one test. Specially, relationships of this position with more faces
could be determined directly. Hence, the number of the remainder faces which require test decrease sharply after each test.

2.3.2.2. Binary search method in PIC test. A quick binary search method for PIC test based on the above idea was developed.
Taking i ¼ 1; j1 ¼ 2 and j2 ¼ n, the detailed process of the binary search method was listed below. The corresponding flow-
chart is given in Fig. 5.

Step (1). Compute /f 12 ¼ UðP;N1N2Þ and /fn1 ¼ UðP;NnN1Þ. If /f 12 ¼ /fn1 ¼ þ1; P must lie at the same side of the face N1N2

and NnN1. Then the process turns to step (2); Otherwise P must lie outside the cell C; and the output of the PIC test is false.
Step (2). Turn to step (3) if n > 3, or compute /f 2n ¼ UðP;N2NnÞ in order to find the position relationship between P and
face N2Nn if n is less than 3. If /f 2n ¼ þ1, implying that P lies in the cell C. The PIC test then returns true. Or else, the PIC
test outputs false.
Step (3). Select the middle node Nm, which divides the cell C into two sub-cells C1 and C2. Then compute
/fm1 ¼ UðP;NmN1Þ to test the geometry relationship of P and the face NmN1. If /fm1 ¼ þ1, the point must be outside the
sub-cell C2. Consequently, only sub-cell C1 needs more PIC tests. Otherwise, the determined cell left C2. Then, it is
required to re-index the nodes if needed. Afterward, the process turns to step (2), where
C1 ¼ fNiji ¼ 1;2; . . . ;mg; C2 ¼ fNiji ¼ 1;mþ 1;mþ 2; . . . ;ng
Fig. 5. Flowchart of the PIC test with the binary search method.

P. Ke et al. / Journal of Computational Physics 228 (2009) 9001–9019 9007
m ¼
n=2; n � 0 ðmod2Þ;
ðn� 1Þ=2; n � 1 ðmod2Þ:

�
ð5Þ
An example was provided in Fig. 6(b), where only six tests are needed to finish the PIC test in order to assure the point to lie
in an octagon cell, while there needs eight tests by the previous methods. For the 3D grids, the binary search becomes too
complicated for PIC test. Therefore it is employed for the TFI test, which would be described in next section.
2.3.2.3. Performance analysis. Generally, the average testing time demanded by the binary search method for a polygon cell
with n faces (that is, n nodes) is at the level of log2n, while the previous exhaustive methods are at the level of n. Further-
more, the exact testing times can be calculated by
f ðnÞ ¼ f ðmþ 1Þ þ 1; ð6Þ
where n > 4, m is given in Eq. (5) and the initial value is f ð3Þ ¼ 3 and f ð4Þ ¼ 4.
Partial results of Eq. (6) are shown in Fig. 7 for the cells with less than 60 nodes and those more reasonable with no more

than 10 nodes, where the worst condition was defined as m holding the value of ðnþ 1Þ=2. Conversely, the best condition
was defined as m with the value of ðn� 1Þ=2. As exhibited in Fig. 7, the binary search method is expected to be more efficient
than the exhaustive ones, which will be demonstrated by more cases in Section 3. Furthermore, the binary search methods is
much easy to be implemented than other efficient methods, such as Octree or split-tree, while the efficiency of the proposed
algorithm is comparable to them under a real Eulerian mesh.

2.3.3. TFI test
TFI test was defined as the intersection test between the particle trajectory and the face, where the trajectory is always

from the current particle position to the target position during the search process. It was applied to determine the exit face in
order to select the neighbor cell after the PIC test found that the target position lay outside the current cell. Here the side
C

1

2
3

4

N1

N2

N3

P

N5

N4

N6

5

6

N7

N8

Nj2 Ni

Nj1

Nk
Nt’

Nt P

(a) (b)

Fig. 6. Demonstrations of the PIC test with binary search method in 2D cell.

0 20 40 60
0

20

40

60

Te
st

 ti
m

es

Node number

Exhaustive search
Binary search (Best)
Binary search (Worst)

3 4 5 6 7 8 9 10
3

4

5

6

7

8

9

10

Fig. 7. Comparison of the binary search method with the exhaustive one.

9008 P. Ke et al. / Journal of Computational Physics 228 (2009) 9001–9019
function was used to judge whether lines or line and face intersected with each other, similar as the T2L test [12], to prevent
the direct intersection computations. Moreover, the binary search method was integrated to speed up the TFI test for 3D
grids.
2.3.3.1. Basics of the TFI test with side function. Suppose that the starting position P is inside the cell C, while the target posi-
tion P0 lies outside the cell C, and a face failed the PIC test of C and P0 is represented by FðNÞ ¼ fNiji ¼ 1;2; . . . ;n; n P 2g. It
can be derived with the side function as,
UðP; FÞ– UðP0; FÞ: ð7Þ
On the other hand, any 2D face (where n ¼ 2) will intersect with the trajectory PP0 in case of UðN1; PP0Þ – UðN2; PP0Þ, and any
3D face (where n > 2) will cross the trajectory PP0 if UðP0;NiPNiþ1Þ ¼ UðP0;NnPN1Þ for any face NiPNiþ1; i 2 ð1;n� 1Þ.

As displayed in Fig. 8(a), UðP; FÞ ¼ þ1; UðP1; FÞ ¼ UðP2; FÞ ¼ �1, thus trajectory PP1 intersects the face because
UðN1; PP1Þ– UðN2; PP1Þ. While PP2 do not cross the face when UðN1; PP2Þ ¼ UðN2; PP2Þ. In Fig. 8(b), the trajectory PP0 inter-
sects the face F, since UðP0;N1PN2Þ ¼ UðP0;N2PN3Þ ¼ UðP0;N3PN1Þ.
F

N1 N2

P

P1

F

F

F

P2

23

4

N1

N2 N3

P

P’

5

1Ni

Nj1
Nj2

P

P’
Nk Nt’Nt

N1N2

N3

P

P’

N5N4

N6

(a) (b) (c) (d)

Fig. 8. Demonstrations of the TFI test application.

A

B

C

DS1

E1

S2

E2

P

P’

F

C C’

C’’

F’

N1

N2

Fig. 9. Demonstrations of the special boundary treatment for face selection.

P. Ke et al. / Journal of Computational Physics 228 (2009) 9001–9019 9009
2.3.3.2. Binary search method in TFI test. Following the above descriptions, it is easy to retrieve the face intersecting the tra-
jectory by using the exhaustive search from all faces which failed the PIC test. It is relatively simple for 2D grids, where the
failed faces are limited. The exhaustive tests might be acceptable. But it will be more time-consuming for 3D grids, partic-
ularly when the failed faces contain many nodes. A quick binary search method was, hence, requested to accelerate the
process.
Target

X

Y

Path (a)
Path (b)
Path (c)
Path (d)

Target

X

Y

Path (a)
Path (b)
Path (c)
Path (d)

Fig. 10. Search paths generated by KE.

Table 1
The comparison among the four algorithms.

PIC Neighbor selection Boundary treatment

TFI Candidate face selection Search method

ZL P2L No The first face failed Exhaustive No
CP P2L Intersect computation The crossed face Exhaustive No
CH P2L T2L The crossed face Exhaustive No
KE Side function Side function The crossed face Binary search Yes

9010 P. Ke et al. / Journal of Computational Physics 228 (2009) 9001–9019
Suppose that UðP; FÞ – UðP0; FÞ for the given face F ¼ fNiji ¼ 1;2; . . . ;n; n P 3g and the given positions P and P0. As shown
in Fig. 8(c), if there are three nodes Ni; Nj1 ; Nj2 ; i < j1 < j2; i; j1; j2 2 ð1; nÞ and UðP0;NiPNj1Þ ¼ UðP0;Nj2PNiÞ ¼ þ1, there will
be two results from the side function computation for any node Nk; k 2 ðj1; j2Þ:

Case (a): UðP0;NkPNiÞ ¼ þ1. There is UðP0;NtPNiÞ ¼ þ1 for any node Nt ; t 2 ðk; j2Þ;
Case (b): UðP0;NkPNiÞ ¼ �1, that is, UðP0;NiPNkÞ ¼ þ1. There is UðP0;NiPNt0 Þ ¼ �1 for any node Nt0 , t0 2 ðj1; kÞ.

Similar as the binary search method in PIC test, more TFI test results can be derived directly by one test. In this way, one
face can be divided into two sub-faces by one test, where only one sub-face need more tests and it has much less nodes than
the original one. Consequently, the number of the remaining TFI tests decrease dramatically after each test.

2.3.3.3. Implementation of the TFI test with binary search method. Given the trajectory PP0 and the face F with n nodes sorted
counter-clockwise, as shown in Fig. 1(d), a quick binary search method to accomplish the TFI test according to the above
theorem could be developed. By assigning i ¼ 1; j1 ¼ 2 and j2 ¼ n, the process can be summarized as follow:

Step (1). Compute /f 12 ¼ UðP0;N1PN2Þ and /fn1 ¼ UðP0;NnPN1Þ. If /f 12 ¼ /fn1 ¼ þ1, trajectory PP0 must locate at the same
side of the face N1PN2and NnPN1. The process then turns to step (2). Or else trajectory PP0 has no intersection with the face
F; and TFI test returns false.
Step (2). Turn to step (3) in case of n > 3, or else compute /f 2n ¼ UðP0;N2PNnÞ to find the relationship between trajectory
PP0 and face N2PNn. If /f 2n ¼ þ1, the trajectory must intersect face F. The TFI test returns true, otherwise returns false.
X Y

Z

ZL
CP
CH
KE

Start

Target

X

Y

ZL
CP
CH
KE

X
Y

Z
ZL
CP
CH
KE

(a)

Fig. 11. Search paths generated by the four algorithms.

P. Ke et al. / Journal of Computational Physics 228 (2009) 9001–9019 9011
Step (3). Select the middle node Nm, where m is computed by Eq. (5), and divide the face into two sub-face F1 and
F2; F1 ¼ fNi; i ¼ 1;2; . . . ;mg; F2 ¼ fNi; i ¼ 1;mþ 1;mþ 2; . . . ;ng. Then compute /fm1 ¼ UðP0;NmPN1Þ and determine the
sub-face to continue TFI test. Accordingly, the nodes would be re-indexed if necessary. Finally, the process goes to step
(2).

Alike the binary search method used in PIC test, this search is more efficient than the direct exhaustive search, because its
average testing time is at the level of log2n, while the direct search is at the level of n.

Here is a sample case to show the worst performance of the algorithm, which is still better than the direct exhaustive
search. As shown in Fig. 8(d), the worst condition for the face of six nodes needs five side function computations (i.e.,
UðP0;N1PN2Þ; UðP0;N6PN1Þ; UðP0;N4PN1Þ; UðP0;N5PN1Þ and UðP0;N5PN6Þ), while the direct exhaustive search needs six side
function evaluations.
Fig. 12. Search path length comparisons among the four algorithms.

9012 P. Ke et al. / Journal of Computational Physics 228 (2009) 9001–9019
2.3.4. Current cell and position reset
The particle localization process will continue after selecting the cell C0 as the new current cell, which is the neighbor of

the cell C and determined by the exit face. On the other hand, the new current position P could be selected using the cross
point of the trajectory and the exit face, or just the center position of the cell C0 for the simplicity.
2.3.5. Special boundary treatment
The previously published known vicinity algorithm might meet problems in case that the search path meets any internal

boundary inside the grid or the external boundaries. The new neighbor selection algorithm was developed in the present
study to overcome such difficulty. If the exit face selected is the boundary, then there will be two choices to continue search-
ing. Choice (a): choose another face that fails the PIC test. If there is no alternative face, the process turns to Choice (b):
Fig. 13. CPU running time comparisons among the four algorithms.

P. Ke et al. / Journal of Computational Physics 228 (2009) 9001–9019 9013
choose the face which next to the boundary and different from the previous cross faces. The face connected to the boundary
would have the priority over others.

For example, t